8 research outputs found

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version

    Social Network Optimization for Electric Vehicles Charging Stations Deployment

    No full text
    The urge to achieve a green infrastructure makes addressing the issue of optimal deployment of Electric Vehicle Charging Stations (EVCS) crucial. To cater to the growing demand, it's essential to design charging infrastructure that maximizes user satisfaction. Public and private sectors active in this field need effective location allocation strategies to stay competitive in the market. Regarding this problem, Evolutionary Algorithms offer a potent and versatile approach to determining the best placement for charging stations. These algorithms' flexibility makes them well-suited for incorporating various constraints and performance metrics. This study employs a recently developed Evolutionary Algorithm, known as Social Network Optimization, to identify the optimal positioning of charging stations. The algorithm takes into account the residential density within cities to compute a Quality-of-Service parameter. The methodology was applied to Genoa and Turin, two Italian cities. The obtained results showcase the promising efficiency and flexibility of this approach in the task of deploying charging stations

    Trends of CO and NO2 Pollutants in Iran during COVID-19 Pandemic Using Timeseries Sentinel-5 Images in Google Earth Engine

    No full text
    The first case of COVID-19 in Iran was reported on 19 February 2020, 1 month before the Nowruz holidays coincided with the global pandemic, leading to quarantine and lockdown. Many studies have shown that environmental pollutants were drastically reduced with the spread of this disease and the decline in industrial activities. Among these pollutants, nitrogen dioxide (NO2) and carbon monoxide (CO) are widely caused by anthropogenic and industrial activities. In this study, the changes in these pollutants in Iran and its four metropolises (i.e., Tehran, Mashhad, Isfahan, and Tabriz) in three periods from 11 March to 8 April 2019, 2020, and 2021 were investigated. To this end, timeseries of the Sentinel-5P TROPOMI and in situ data within the Google Earth Engine (GEE) cloud-based platform were employed. It was observed that the results of the NO2 derived from Sentinel-5P were in agreement with the in situ data acquired from ground-based stations (average correlation coefficient = 0.7). Moreover, the results showed that the concentration of NO2 and CO pollutants in 2020 (the first year of the COVID-19 pandemic) was 5% lower than in 2019, indicating the observance of quarantine rules, as well as people’s initial fear of the coronavirus. Contrarily, these pollutants in 2021 (the second year of the COVID-19 pandemic) were higher than those in 2020 by 5%, which could have been due to high vehicle traffic and a lack of serious policy- and law-making by the government to ban urban and interurban traffic. These findings are essential criteria that might be used to guide future manufacturing logistics, traffic planning and management, and environmental sustainability policies and plans. Furthermore, using the COVID-19 scenario and free satellite-derived data, it is now possible to investigate how harmful gas emissions influence air quality. These findings may also be helpful in making future strategic decisions on how to cope with the virus spread and lessen its negative social and economic consequences

    Flood susceptibility mapping using multi-temporal SAR imagery and novel integration of nature-inspired algorithms into support vector regression

    Get PDF
    Flood has long been known as one of the most catastrophic natural hazards worldwide. Mapping flood-prone areas is an important part of flood disaster management. In this study, a flood susceptibility mapping framework was developed based on a novel integration of nature-inspired algorithms into support vector regression (SVR). To this end, various remote sensing (RS) and geographic information system (GIS) datasets were applied to the hybridized SVR models to map flood susceptibility in Ahwaz township, Iran. The proposed framework has two main steps: 1) updating the flood inventory (historical flooded locations) using the proposed RS-based flood detection method developed within the google earth engine (GEE) platform. The mosaicked images of multi-temporal Sentinel-1 synthetic aperture radar (SAR) data have been used in this step; 2) producing flood susceptibility map using the standalone SVR and hybridized model of SVR. The hybridized methods were derived from a novel integration of SVR with meta-heuristic algorithms, hence forming the SVR-bat algorithm (SVR-BA), SVR-invasive weed optimization (SVR-IWO), and SVR-firefly algorithm (SVR-FA). A spatial database of flood locations and 11 conditioning factors (altitude, slope angle, aspect, topographic wetness index, stream power index, normalized difference vegetation index (NDVI), distance to stream, curvature, rainfall, soil type, and land use/cover) were built for the susceptibility modelling. The accuracy of the proposed model was evaluated using the statistical and sensitivity indices, such as root mean square error (RMSE), receiver operating characteristic (ROC) and area under the ROC curve (AUROC) index. The results indicated that all hybridized models outperformed the standalone SVR. According to AUROC values, the predictive power of the SVR-FA was the highest with the value of 0.81, followed by SVR-IWO, SVR-BA, and SVR with values of 0.80, 0.79, and 0.77, respectively.</p

    Land subsidence susceptibility mapping using persistent scatterer SAR interferometry technique and optimized hybrid machine learning algorithms

    No full text
    In this paper, land subsidence susceptibility was assessed for Shahryar County in Iran using the adaptive neuro-fuzzy inference system (ANFIS) machine learning algorithm. Another aim of the present paper was to assess if ensembles of ANFIS with two meta-heuristic algorithms (imperialist competitive algorithm (ICA) and gray wolf optimization (GWO)) would yield a better prediction performance. A remote sensing synthetic aperture radar (SAR) dataset from 2019 to 2020 and the persistent-scatterer SAR interferometry (PS-InSAR) technique were used to obtain a land subsidence inventory of the study area and use it for training and testing models. Resulting PS points were divided into two parts of 70% and 30% for training and testing the models, respectively. For susceptibility analysis, eleven conditioning factors were taken into account: the altitude, slope, aspect, plan curvature, profile curvature, topographic wetness index (TWI), distance to stream, distance to road, stream density, groundwater drawdown, and land use/land cover (LULC). A frequency ratio (FR) was applied to assess the correlation of factors to subsidence occurrence. The prediction power of the models and their generated land subsidence susceptibility maps (LSSMs) were validated using the root mean square error (RMSE) value and area under curve of receiver operating characteristic (AUC-ROC) analysis. The ROC results showed that ANFIS-ICA had the best accuracy (0.932) among the models (ANFIS-GWO (0.926), ANFIS (0.908)). The results of this work showed that optimizing ANFIS with meta-heuristics considerably improves LSSM accuracy although ANFIS alone had an acceptable result.Optical and Laser Remote Sensin

    Flood susceptibility mapping using multi-temporal SAR imagery and novel integration of nature-inspired algorithms into support vector regression

    No full text
    Flood has long been known as one of the most catastrophic natural hazards worldwide. Mapping flood-prone areas is an important part of flood disaster management. In this study, a flood susceptibility mapping framework was developed based on a novel integration of nature-inspired algorithms into support vector regression (SVR). To this end, various remote sensing (RS) and geographic information system (GIS) datasets were applied to the hybridized SVR models to map flood susceptibility in Ahwaz township, Iran. The proposed framework has two main steps: 1) updating the flood inventory (historical flooded locations) using the proposed RS-based flood detection method developed within the google earth engine (GEE) platform. The mosaicked images of multi-temporal Sentinel-1 synthetic aperture radar (SAR) data have been used in this step; 2) producing flood susceptibility map using the standalone SVR and hybridized model of SVR. The hybridized methods were derived from a novel integration of SVR with meta-heuristic algorithms, hence forming the SVR-bat algorithm (SVR-BA), SVR-invasive weed optimization (SVR-IWO), and SVR-firefly algorithm (SVR-FA). A spatial database of flood locations and 11 conditioning factors (altitude, slope angle, aspect, topographic wetness index, stream power index, normalized difference vegetation index (NDVI), distance to stream, curvature, rainfall, soil type, and land use/cover) were built for the susceptibility modelling. The accuracy of the proposed model was evaluated using the statistical and sensitivity indices, such as root mean square error (RMSE), receiver operating characteristic (ROC) and area under the ROC curve (AUROC) index. The results indicated that all hybridized models outperformed the standalone SVR. According to AUROC values, the predictive power of the SVR-FA was the highest with the value of 0.81, followed by SVR-IWO, SVR-BA, and SVR with values of 0.80, 0.79, and 0.77, respectively.Geo-engineerin

    Ocean Remote Sensing Techniques and Applications: A Review (Part I)

    No full text
    Oceans cover over 70% of the Earth&rsquo;s surface and provide numerous services to humans and the environment. Therefore, it is crucial to monitor these valuable assets using advanced technologies. In this regard, Remote Sensing (RS) provides a great opportunity to study different oceanographic parameters using archived consistent multitemporal datasets in a cost-efficient approach. So far, various types of RS techniques have been developed and utilized for different oceanographic applications. In this study, 15 applications of RS in the ocean using different RS techniques and systems are comprehensively reviewed and discussed. This study is divided into two parts to supply more detailed information about each application. The first part briefly discusses 12 different RS systems that are often employed for ocean studies. Then, six applications of these systems in the ocean, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD), are provided. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed. The other nine applications, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery, are provided in Part II of this study
    corecore